Controlling Artificial Limb Movement System using EEG Signals
نویسندگان
چکیده
منابع مشابه
Classification of Eyelid Position and Eyeball Movement Using Eeg Signals
Contamination of EOG activities in EEG signals remains a significant problem in designing the hybrid BCI system. Since EEG signals have always been contaminated by EOG artifacts, we employ these artifacts as inputs into our system. Therefore, in this study we utilized theEEG and its EOG artifacts as inputs to the hybrid BCI and evaluated the classification performance between thresholding and c...
متن کاملExecuted Movement Using EEG Signals through a Naive Bayes Classifier
Recent years have witnessed a rapid development of brain-computer interface (BCI) technology. An independent BCI is a communication system for controlling a device by human intension, e.g., a computer, a wheelchair or a neuroprosthes is, not depending on the brain’s normal output pathways of peripheral nerves and muscles, but on detectable signals that represent responsive or intentional brain ...
متن کاملAssessing Movement Factors in Upper Limb Kinematics Decoding from EEG Signals
The past decades have seen the rapid development of upper limb kinematics decoding techniques by performing intracortical recordings of brain signals. However, the use of non-invasive approaches to perform similar decoding procedures is still in its early stages. Recent studies show that there is a correlation between electroencephalographic (EEG) signals and hand-reaching kinematic parameters....
متن کاملRecognition of finger movements using EEG signals for control of upper limb prosthesis using logistic regression
Brain computer interface decodes signals that the human brain generates and uses them to control external devices. The signals that are acquired are classified into movements on the basis of feature vector after being extracted from raw signals. This paper presents a novel method of classification of four finger movements (thumb movement, index finger movement, middle and index finger combined ...
متن کاملRobot control system using SMR signals detection
One of the important issues in designing a brain-computer interface system is to select the type of mental activity to be imagined. In some of these systems, mental activity varies with user intent and action that must be controlled by the brain-computer system, and in a number of other signals, the received signals contain the same activity-related mental activity that should be performed by t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indian Journal of Science and Technology
سال: 2016
ISSN: 0974-6846,0974-5645
DOI: 10.17485/ijst/2016/v9i47/107945